Помощь студентам онлайн! Без посредников! Без предоплаты! http://diplomstudent.net/

Содержание

Задача 1. Прогнозирование с помощью среднего абсолютного прироста	. 3
Задача 2. Сглаживание временных рядов с помощью скользящих средних.	
Восстановление краевых значений	. 4
Задача 3. Методы обработки индивидуальных экспертных оценок	. 9
Стандартизация рангов	. 9
Задача 4. Ранжирование объектов по коллективной экспертной оценке 1	11

Задача 1. Прогнозирование с помощью среднего абсолютного прироста

Данные таблицы описывают изменение, процентной ставки банка в течение семи кварталов

Текущий	1	2	3	4	5	6	7
номер							
квартала, t							
Процентная	1,5	1,17	1,45	1,37	1,65	1,78	1,8
ставка							
банка, ут %							
, ,							

Требуется:

- 1. рассчитать прогнозное значение процентной ставки банка в восьмом квартале с помощью среднего абсолютного прироста.
- 2. обосновать правомерность использования среднего абсолютного прироста для получения прогнозного значения процентной ставки в восьмом квартале;

Решение:

Текущий	1	2	3	4	5	6	7	8
номер								
квартала, t								
						. = 0		
Процентная	1,5	1,17	1,45	1,37	1,65	1,78	1,8	X
ставка банка,								
yt %								
Абсолютный	X	-0,33	0,28	-0,08	0,28	0,13	0,02	X
цепной								
прирост								
Средний	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05
абсолютный								
прирост								

Абсолютный прирост цепной (Δy_{II}) – это разность между текущим уровнем ряда и предыдущим:

$$\Delta y_{\iota\iota} = y_i - y_{i\text{-}1}$$

1,17 -1,5= -0,33(второй квартал)

1,45 -1,17=0,28(третий квартал)

1,37-1,45=-0,08(четвертый квартал)

1,65-1,37=0,28(пятый квартал)

1,78-1,65=0,13(шестой квартал)

1,8-1,78=0,02(седьмой квартал)

Легко абсолютные приросты заметить, ЧТО цепные примерно 0,02 0,28, одинаковы. Они незначительно варьируют ДО ЧТО свидетельствует о близости процесса развития к линейному. Поэтому представляется правомерным оценить прогнозное значение с помощью среднего прироста.

Средний показатель абсолютного прироста:

Средний абсолютный прирост может быть получен по одной из формул:

$$\Delta \overline{y} = \frac{\sum \Delta y_{ui}}{n} \Delta \overline{y} = \frac{y_n - y_1}{n - 1},$$

где п - число уровней ряда динамики;

 Y_1 - первый уровень ряда динамики;

 y_n - последний уровень ряда динамики;

 $\Delta y_{\scriptscriptstyle \mathrm{u}i}$ - цепные абсолютные приросты.

$$(1,8-1,5)/(7-1)=0,05$$

Или:

$$(-0.33+0.28+(-0.08)+0.28+0.13+0.02)/6=0.05.$$

Прогнозное значение процентной ставки банка:

$$1,8 +0,05=1,85$$

Ответ: прогноз на 8 квартал=1,85%.

Задача 2. Сглаживание временных рядов с помощью скользящих средних. Восстановление краевых значений

Условие: В таблице представлены данные об изменении среднего реального располагаемого дохода за 16 лет у домохозяйств. Требуется:

- 1) провести сглаживание временного ряда, используя пятилетнюю простую скользящую среднюю;
- 2) провести сглаживание временного ряда, используя пятилетнюю взвешенную скользящую среднюю (выравнивание проводить по полиному второго порядка).
 - 3) восстановить потерянные уровни для простой скользящей средней.
- 4) построить график, на который должны быть нанесены три ломаные линии.

Текущий номер года, t	Средний реальный располагаемый доход, тыс. руб, Yt
1	12,4
2	12,8
3	16
4	12
5	9,6
6	10,4
7	10,8
8	9,2
9	8
10	9,2
11	8,4
12	7,6
13	4,8
14	6,8
15	6
16	6,4

Решение:

Алгоритм сглаживания по простой скользящей средней:

- а)Определяют длину интервала сглаживания L. При этом надо иметь в виду, что чем шире интервал сглаживания, тем в большей степени поглощаются колебания, и тенденция развития носит более плавный, сглаженный характер. Чем сильнее колебания, тем шире должен быть интервал сглаживания.
- b) Разбивают весь период наблюдений на участки, при этом интервал сглаживания «скользит» по ряду с шагом, равным L.
- с) Рассчитывают средние арифметические из уровней ряда, образующих каждый участок.
- d) Заменяют фактические значения ряда, стоящие в центре каждого участка, на соответствующие средние значения.

t	Yt	Простая скользящая средняя при L=5	Абсолютные приросты Исходный ряд (цепные)	Абсолютные приросты Простая СС (цепные)
Гр.1	Гр.2	Гр.3	Гр.4	Гр.5
1	12,4	1,80		
2	12,8	2,20	0,40	0,40
3	16	12,56	3,30	10,36
4	12	12,16	-4,00	-0,40
5	9,6	11,76	-2,40	-0,40
6	10,4	10,40	0,80	-1,36
7	10,8	9,60	0,40	-0,80
8	9,2	9,52	-1,60	-0,08
9	8	9,12	-1,20	-0,40
10	9,2	8,48	1,20	-0,64
11	8,4	7,60	-0,80	-0,88
12	7,6	7,36	-0,80	-0,24

13	4,8	6,72	-2,80	-0,64
14	6,8	6,32	2,00	-0,40
15	6	-1,2	-0,80	-7,52
16	6,4	0	0,40	1,20
среднее			-0,39	-0,12

Простая скользящая средняя:

2. Восстановление потерянных уровней для простой средней:

А. вычислим средний абсолютный прирост на первом (последнем) активном участке;

Б. получим сглаженные значения в конце временного ряда путем последовательного вычитания (прибавления) среднего абсолютного прироста к последнему сглаженному значению.

Восстановление потерянных уровней. Простая средняя. Вычисление среднего абсолютного прироста в начале ряда:

t	Yt	Үt пр	Цепной Абсолютный прирост (Yt-Yt- 1)	Восстановление уровней ряда
1	12,4	X	-/	
2	12,8	X	12,8-12,4=0,4	2,2
3	16		16-12,8=3,3	X
Средний абсолютный прирост			1,8	X

Вычисление среднего абсолютного прироста в конце ряда:

Dbi inchenne ep	еднего абсолют	noro npnpoera b	копце рида.	
t	Yt	Yt пр	Цепной	Восстановление
			Абсолютный	уровней ряда
			прирост (Yt-Yt-	
			1)	
14	6,8		X	X
15	6	X	6-6,8= -0,8	-1,2
16	6,4	X	6,4-6,0=+0,4	0
Средний			-0,4	X
абсолютный				
прирост				

Абсолютный прирост (Δ)

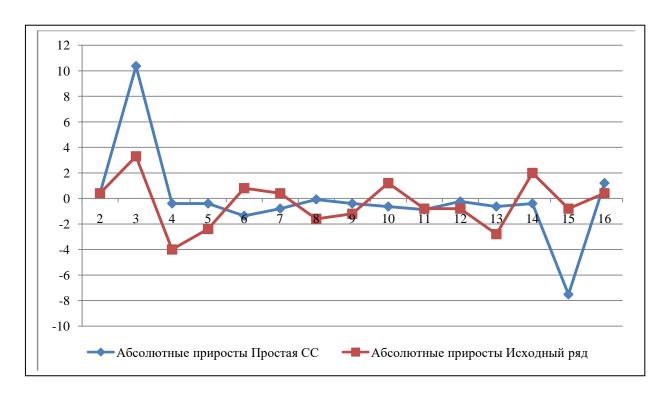
Базисный прирост

Цепной прирост

$$\Delta = y_i - y_0$$

$$\Delta = y_i - y_{i-1}$$

где *yi* - уровень сравниваемого периода; *yo* - уровень базисного периода.


где *yi-1,-* уровень периода, предшествующего сравниваемому

Спрогнозируем значение ряда на 17 год, используя метод среднего абсолютного прироста:

	Прогноз на 17 год
По исходному ряду	0,01
По ряду, сглаженному простой скользящей средней	1,08

Начертим графики (2 линии на одном графике) изменения во времени:

- 1. исходных данных,
- 2. сглаженных простой скользящей средней.

Задача 3. Методы обработки индивидуальных экспертных оценок. Стандартизация рангов

Условие: Эксперту дали задание: оценить (ранжировать) объекты от 1 до 10. Результаты изложены в таблице:

Объект		X1	X2	X3	X4	X5	X6	X7	X8	X9	X10
эксперт	Ранг	6	7	6	1	5	4	3	2	6	1
	Стандартизированный ранг										

Как видно из таблицы, эксперт поставил одинаковые ранги разным объектам, таким образом нарушив масштаб.

Требуется: Используя ранги, установленные экспертом, определить стандартизированные ранги.

Решение:

1. Ранжирование - расположение показателей в порядке возрастания (убывания) некоторого общего признака. Каждый эксперт приписывает объектам ранжирования номера натурального ряда 1,2,3,...,п (ранги) в порядке возрастания (убывания) заданного признака. Мера этого качества экспертом чисто субъективно.

Ранжирование 1) применяется В следующих случаях: если 2) рассматриваемые показатели имеют различную природу; если представляет интерес только взаимное упорядоченное (пространственное или временное) расположение объектов; 3) если часть показателей измерить невозможно или измерение в настоящее время затруднительно.

2. Стандартизация рангов необходима, если некоторым S объектам присвоен один и тот же номер, например, объекты поделили n1-ns места. Тогда им присваивается стандартизированный ранг, равный среднему арифметическому мест, которые они поделили.

На примере данных объектам X4, X10 присвоен одинаковый ранг 1.Этим объектам присвоено 1 и 2 места, Стандартизированный ранг равен (1+2)/2=1,5.

Объект		X1	X2	X3	X4	X5	X6	X7	X8	X9	X10
эксперт	Ранг	6	7	6	1	5	4	3	2	6	1
	Стандартизированный ранг	8	10	8	1,5	6	5	4	3	8	1,5

На примере данных объекту X8 присвоен ранг 2.Этому объекту присвоено 3 место.

На примере данных объекту X7 присвоен ранг 3.Этому объекту присвоено 4 место.

На примере данных объекту X6 присвоен ранг 4.Этому объекту присвоено 5 место.

На примере данных объекту X5 присвоен ранг 5.Этому объекту присвоено 6 место.

На примере данных объекту X1,X3,X9 присвоен ранг 6.Этим объектам присвоены места:7,8,9. Стандартизированный ранг составит: (7+8+9)/3=8.

На примере данных объекту X2 присвоен ранг 7.Этому объекту присвоено 10 место.

Задача 4. Ранжирование объектов по коллективной экспертной оценке

Условие: Пяти экспертам (m=5) было предложено проранжировать девять факторов (n=9) по степени их влияния на производительность труда рабочих. Набор этих факторов включает: X1 - состояние тарифной системы, X2

- коэффициент напряженности норм, X3 - сбыт продукции, X4 - коэффициент ритмичности поставок сырья, X5 - организация работы в цехе по обеспечению рабочих мест инструментом, X6 - условия труда рабочего (освещенность, санитарные условия), X7 - стаж работы по специальности, X8 - состояние оборудования, X9 - социально-психологические условия.

Фактору, оказывающему наибольшее влияние на производительность труда, присваивается ранг 1, следующему - ранг 2 и т.д.

\wedge		1			_	1
Ответы экспе	ntor o nahwi	и п ованию ф	19KTONOR	свелены в	таопину	Ι.
O I DO I DI SKOIIC	prob o painki	трованию ф	aniopob	сведены в	таолицу	т.

Эксперты, і	Факторы (объекты), ј							Сумма			
	X1	X2	X3	X4	X5	X6	X7	X8	X9		
Гр. 1	Гр.	Гр. 3	Гр. 4	Гр. 5	Гр. 6	Гр.	Гр.	Гр.	Гр.	Гр. 11	Гр.
	2					7	8	9	10		12
E1	1	3	4	7	3	4	2	5	3		
E2	2	1	6	7	10	2	4	5	4		
E3	3	2	6	1	8	2	2	5	4		
E4	6	5	4	1	3	3	7	1	2		
E5	1	2	4	3	5	5	7	7	5		

Требуется: сделать вывод о степени влияния факторов на производительность труда рабочих.

Решение:

Эксперты, і	Факторы (объекты), ј							Сумма (среднее по экспертам)		
	X1	X2	X3	X4	X5	X6	X7	X8	X9	
Гр. 1	Γp. 2	Гр. 3	Гр. 4	Гр. 5	Гр. 6	Γp. 7	Гр. 8	Гр. 9	Гр. 10	Гр. 11
E1	1	3	4	7	3	4	2	5	3	3,55
E2	2	1	6	7	10	2	4	5	4	4,55
E3	3	2	6	1	8	2	2	5	4	3,66
E4	6	5	4	1	3	3	7	1	2	3,55
E5	1	2	4	3	5	5	7	7	5	4,33
Сумма (среднее арифметич еское по факторам)	2,6	2,6	4,8	3,8	5,8	3,2	4,4	4,6	3,6	
Результиру ющий ранг	1,5	1,5	8	5	9	3	6	7	4	

Фактору, оказывающему наибольшее влияние на производительность труда, присваивается ранг 1, следующему - ранг 2 и т.д.

Выводим результирующий ранг. Для наименьшей величины Sj присваивается результирующий ранг 1, для наименьшей из оставшихся величин Sj присваивается результирующий ранг 2 и т.д.

Показатели	Важность (ранг)	Результирующий ранг
X1	состояние тарифной системы	1,5
X2	коэффициент напряженности норм	1,5
X3	сбыт продукции	8
X4	коэффициент ритмичности поставок	5
	сырья	
X5	организация работы в цехе по	9
	обеспечению рабочих мест	
	инструментом	
X6	условия труда рабочего (освещенность,	3
	санитарные условия);	
X7	стаж работы по специальности	6
X8	состояние оборудования	7
X9	социально-психологические условия	4

На производительность труда рабочих важное влияние оказывают: состояние тарифной системы и коэффициент напряженности норм. Менее важными факторами являются: условия труда рабочего (освещенность, санитарные условия); социально-психологические условия; коэффициент ритмичности поставок сырья; стаж работы по специальности. Не важными факторами, влияющие на производительность труда являются: сбыт продукции; организация работы в цехе по обеспечению рабочих мест инструментом; состояние оборудования.